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OBJECTIVES
The primary objectives of this research is to develop reliable parallel algorithms and soft-
ware tools for building improved reduced-order models with an emphasis on fluid systems.

ACCOMPLISHMENTS

Overview

Our research program has focused on reduced-order models for large-scale systems
with an emphasis on fluids and control problems. A major accomplishment has been to
develop and analyze an algorithm suitable for computing proper orthogonal decomposition
(POD) basis functions from large-scale CFD data. The main feature of this algorithm is
that it can be used with highly scalable CFD algorithms that utilize domain decomposition
to distribute data across compute nodes. In other words, it works with data sets, allowing
POD to be used with complex 3D flows. This algorithm was tested by computing reduced-
order models for unsteady flow past a 3D cylinder computed on System X (Virginia Tech’s
high performance supercomputer which was ranked number 3 in the world in November
2003 and was still in the top 50 in 2006). This computation would not have been possible
if the data had to be collected on one compute node.

We have also investigated a number of traditional methods for reducing the computa-
tional model in complex flows. These include a multilevel approach that can be used to
split the computation between coarse and fine grids. An added feature of this multilevel
approach is that it gave the first theoretical insight into the relationship between the fil-
ter radius in an LES model and the required discretization size. Traditionally, using the
relationship of two discretization points in each direction inside a filter radius had been
used based on computational experience. We have also studied accuracy issues in comput-
ing sensitivity analysis for fluids. This research will be applied in the follow on proposed
research incorporating sensitivity analysis with POD in order to extend the accuracy of
reduced order models in parameter space.

For large linear systems, alternative projection-based methods based on a rational Krylov
projection framework were proposed and studied. For control problems, or model reduction
of linear input-output systems, these projection methods have optimal H2 properties. This
projection framework has also been applied to the Fourier model reduction methodology
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as well. Toward the end of this research study, we investigated an interpolatory framework
that provides insight on the optimal parameter values in which to sample data.

We will provide detail on the high-performance computational algorithm for parallel
computation of POD basis vectors as well as results from its application to 3D flow past a
cylinder at a Reynolds number of 525.

The Filtered Subspace Iteration Algorithm

An enabling method for simulating complex PDE dynamical systems is domain de-
composition (see Widlund and Tosseli for a good overview). The general philosophy is
to partition the spatial domain into subdomains and integrate the PDE in parallel on each
subdomain. “Information” at the boundaries of these subdomains are communicated to
their neighbors to facilitate the integration. There are many approaches for implementing
domain decomposition that we will not discuss here. In practice, these subdomains are
constructed so that the size of the discrete systems are nearly the same (for good load bal-
ancing) and minimize the discretization size along the interfaces (for low communication
requirements).

At the end of a simulation, the snapshot matrix is distributed across several processors.
We present an algorithm for computing the SVD that takes advantage of this data structure.
This is of interest since it may not be possible to assemble the entire snapshot matrix on a
single processor.

We assume that the POD snapshot matrix can be represented as

Y =


Y1

Y2
...
Ynp


Y1 is N1 × p
Y2 is N2 × p

...
Ynp is Nnp × p

The algorithm provides an efficient method for computing the dominant q POD basis
vectors where we assume

q << p << Ni << N =
np∑
i=1

Ni.

we use caligraphic notation (Y ,U ,V) to denote global quantities, subscripts to denote pro-
cessor number Y1, Y2, . . . , superscripts to denote iteration number and̂ to denote an ag-
gregated matrix. The algorithm, known as filtered subspace iteration consists of two parts.
The first constructs a good initial guess and the second performs iterative corrections to it.

Algorithm 1 Initialization
for i = 1 : np V

(0)
i = q dominant right singular vectors of Yi send V

(0)
i to other

processors (or to processor 0) end
Accumulate V̂ =

[
V

(0)
1 V

(0)
2 · · ·V (0)

np

]
V(0) = q dominant left singular vectors of V̂ .
broadcast V(0) to all processors (if not locally computed)
Compute C(0) = YV(0) (in parallel)
Compute U (0) = q dominant left singular vectors of C(0) using Algorithm 2 or 3 below.



This algorithm relies on the fact that the snapshot matrix comes from a dynamical
system and that solutions would have the “separation of variables” structure

y(t) =
∞∑
i=1

yiai(t), t ∈ (ta, tb).

In other words, we assume that the dominant time trajectory a1(·) is prominent for each
portion of y1. Numerical experiments indicate that there is a strong correlation in the right
singular vectors of Yi. Thus, this initialization provides a good starting point for the filtered
subspace iteration algorithm (Algorithm 4).

One implementation note is that the accumulation of V̂ could occur on every processor
(through broadcasts of the V (0)

i ’s). Hence, each processor would find V(0) and avoid the
subsequent broadcast. This avoids two communication steps at the expense of one more
network intensive step. This modification has not yet been tested. A second note is that
the U (0) only needs to be an orthonormal basis for C(0) in practice, thus could be found by
Gram-Schmidt or something equivalent. However, using an SVD at this steps gives good
agreement with the true POD basis and hence is useful in comparisons.

We now present two approaches for computing U (j), the q dominant singular vectors of
C(j) (an N × q matrix).

Algorithm 2 Real Schur

1. Compute
(
C(j)

)T
C(j). requires one time communication of approximately N × q.

2. Perform a real Schur factorization of this q × q matrix product(
C(j)

)T
C(j) = ZS2ZT .

3. Broadcast Z and the diagonal elements of S to all processors.

4. The multiplication YZS−1 places the correct rows of U (j) onto the appropriate pro-
cessor.

Note that the product CTC above can be performed in parallel with relatively little commu-
nication. If C has the following structure

CT =
[
CT

1 CT
2 · · · CT

np

]
,

then CTC can be expressed as the sum

CT
1 C1 + CT

2 C2 + · · ·+ CT
np
Cnp

where the ith term above can be computed locally on the ith processor. Thus, there only
needs to be parallel communication of the np distinct q × q matrices.

Algorithm 3 Gram-Schmidt Orthogonalize the columns of C(j).



The result of the initialization algorithm is a good approximation to the dominant q
dimensional subspace for the range of Y . In practice, this provides a great start for the
iterative corrections given in the filtered subspace iteration algorithm below.

Algorithm 4 (Filtered Subspace Iteration) for j=1:Jmax

1. Calculate D(j) =
(
U (j−1)

)T
Y . This q × p matrix can be accumulated onto one

processor or broadcast to every processor.

2. V(j) = q dominant right singular vectors of D(j). Possibly communicate to every
processor.

3. Calculate C(j) = YV(j) (an N × q matrix).

4. Compute U (j) as the q dominant left singular vectors of C(j) using one of the two
algorithms above.

Test for convergence.

Analysis of the filtered subspace iteration

At the end of the first step in Algorithm 4, we have

D(j) =
(
U (j−1)

)T
Y

= Û (j)Σ̂(j)
[
V(j)Ṽ(j)

]T
(since V(j) are the dominant right singular vectors of D(j)).

Rearranging terms, we have(
U (j−1)

)T
Y
[
V(j)Ṽ(j)

]
= Û (j)Σ̂(j)

By filling out the orthogonal complement to U (j−1), we have
(
U (j−1)

)T(
Ũ (j−1)

)T

Y [V(j)Ṽ(j)
]

=


(
U (j−1)

)T
YV(j)

(
U (j−1)

)T
YṼ(j)(

Ũ (j−1)
)T
YV(j)

(
Ũ (j−1)

)T
YṼ(j)


Note that the (1,2) block above (in red) is a zero block since UTY is a rank q matrix and
the columns q + 1→ p of Û (j)Σ̂(j) are zero.

Thus, we observe that
(
U (j−1)

)T(
Ũ (j−1)

)T

YYT
[(
U (j−1)

)T (
Ũ (j−1)

)T
]

=

[
Y

(j−1)
11 0

Y
(j−1)
12 Y

(j−1)
22

] 
(
Y

(j−1)
11

)T (
Y

(j−1)
12

)T

0
(
Y

(j−1)
22

)T

 .
Likewise, after the second step of the filtered subspace algorithm, we have

C(j) = YV(j) =
[
U (j)Ũ (j)

]
Σ̃Ṽ T .



and 
(
U (j)

)T(
Ũ (j)

)T

Y [V(j)Ṽ(j)
]

=


(
U (j)

)T
YV(j)

(
U (j)

)T
YṼ(j)(

Ũ (j)
)T
YV(j)

(
Ũ (j)

)T
YṼ(j)


Again, the (1,2) block above (in red) is a zero block since Σ̃(j)

(
Ṽ(j)

)T
is a rank q matrix

and columns q + 1→ p are zero.

Application of the filtered subspace iteration

This algorithm was tested on the three dimensional flow past a circular cylinder with a
fine mesh in the streamwise and crossflow plane (128 × 192 × 32) leading to 3.14 × 106

degrees of freedom partitioned over 128 processors. Data was generated over 80 time
snapshots and the above algorithm was applied. The first two POD modes for the velocity
are depicted in Figures 1, 2 and 3. We note that a study of the accuracy of the algorithm
was performed in the paper A Domain Decomposition Approach to POD by the co-PIs.



Figure 1: Streamwise POD Modes 1 and 2

Figure 2: Crossflow POD Modes 1 and 2

Figure 3: Spanwise POD Modes 1 and 2



Continuing Research

Two of the co-PIs, Jeff Borggaard and Traian Iliescu along with two postdoctoral asso-
ciates (Andrew Duggleby in Mechanical Engineering and Alexander Hay in Mathematics)
are using turbulent flow data to generate a reduced-order basis for improved reduced-order
models for turbulent flows. We are currently validating the reduced-order models we pro-
posed in challenging three-dimensional simulations of turbulent pipe flows. We have also
proposed alternative approaches to the usual reduced-order modeling approaches, by us-
ing the Variational Multiscale method and the Dynamic procedure (based on a two-scale
computation of the turbulent model parameters).
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Dissemination of Research Results
Publications

During this project, we have submitted more than 32 publications. The publication
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Presentations at meetings, conferences or seminars
During this project, we have given more than fifty two presentations at meetings, confer-
ences or seminars. This includes two tutorial talks (a short course and a plenary overview)
on reduced-order modeling. In addition, graduate students attended regional meetings and
gave presentations on their research involving reduced-order modeling for control prob-
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6. Laboratory for Modeling and Scientific Computing MOX, Department of Mathemat-
ics ”F. Brioschi”, Politecnico di Milano, Milano, Italy (May 2006).

7. SIAM Conference on Computational Science and Engineering, Costa Mesa, CA
(February 2007).



8. 6th International Congress on Industrial and Applied Mathematics, Zurich, Switzer-
land (July 2007).

9. Plenary Talk: Sandia CSRI Workshop on Mathematical Methods for Verification
and Validation (August 2007).

10. AMS Spring Central Meeting, Bloomington, IN (April 2008).

Interactions and Transitions
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH

Jeff Borggaard spent the summer at AFRL/VACA working with Chris Camphouse and
James Myatt on a flow control problem. Efficient POD software using algorithms devel-
oped in this research and applicable to practical engineering reduced-order model-based
control algorithms was provided to the AFRL researchers.

Daniel Sutton, Masters student in Mechanical Engineering, and partially supported on this
project, spent a summer at the Air Vehicles Directorate working with Siva Banda, Chris
Camphouse and James Myatt: He worked on computing low-order models based on Proper
Orthogonal Decomposition. He studied the use of POD for coupled systems. The PI and
Lizette Zietsman made a two day visit to the lab during Daniel’s internship to discuss his
research.

[Contacts: Chris Camphouse (937) 255-6326, James Myatt (937) 255-8498]

Synergistic Activities
1. Serkan Gugerin, with Karen Willcox from MIT, organized a two-part minisympo-

sium on Model Reduction at the SIAM Annual Meeting, in Boston, MA, July 10-14,
2006.

2. Jeff Borggaard and Traian Iliescu co-organized Emerging Finite Element Methods
for Complex Flow at the 2007 SIAM Conference on Computational Science and
Engineering, Costa Mesa, CA (February 2007).

3. Jeff Borggaard co-organized Model Reduction Methods for Flow in Porous Media
at the 2007 SIAM Conference on Mathematical and Computational Issues in the
Geosciences, Santa Fe, NM (March 2007).

4. Joseph Ball and Christopher A. Beattie and Serkan Gugercin from Virginia Tech.,
Athanasios C. Antoulas from Rice University, and Tryphon T. Georgiou from Univer-
sity of Minnesota are the organizers of the 18th International Symposium on Math-
ematical Theory of Networks and Systems (MTNS 2008) in Blacksburg, VA, July
2008. There are several sessions on reduced-order modeling. Presentations by the
co-PIs and graduate students on our reduced-order modeling research are scheduled.

Honors/Awards
Jeff Borggaard was awarded an ASEE Summer Faculty Fellowship and spent May-July
2007 at the AFRL Control Sciences Center of Excellence.

Serkan Gugercin was awarded an NSF Early Career Award in Computational and Applied
Mathematics, 2007.
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